

QUALITÀ PRFV

La nostra filosofia qualitativa si rispecchia nella pretesa di offrire per tutti i settori i prodotti giusti, di qualità adeguata e nel rispetto delle norme / prescrizioni di competenza.

Scegliete SPRICH e la nostra azienda si occuperà di tutte le fasi operative, dalla pianificazione fino alla messa in esercizio.

Il nostro atteggiamento nei confronti della qualità.

Abbiamo obiettivi esigenti per il nostro operato. I nostri obiettivi prioritari sono una diffusione positiva del nome SPRICH, la soddisfazione dei nostri clienti e una selezione accurata dei nostri dipendenti, con una continua formazione professionale.

I prodotti che distribuiamo devono soddisfare elevati standard qualitativi. La qualità dei nostri prodotti e servizi viene costantemente controllata.

PRODOTTI IN PRFV

I grigliati in PRFV sono elementi prefabbricati appositamente pensati per il campo industriale. Requisiti particolari per edifici o applicazioni architettoniche devono sempre essere discussi a parte. Come standard si realizza una produzione industriale.

Scostamenti cromatici, piccole bolle o irregolarità della superficie non possono essere evitati. Non esitate a contattare i nostri esperti per ulteriori dettagli.

Definizione del termine PRFV

I materiali plastici rinforzati alle fibre di vetro (PRFV) sono materiali compositi realizzati con fibre di vetro e resina. Come già indicato dal nome, la fibra di vetro rinforza la resina. Per realizzare le griglie in PRFV, le fibre di vetro sono posate sciolte nella sagoma a V della griglia, imbibite di resina e quindi sottoposte a indurimento.

COLORI PER PRFV

Tinteggiatura

I prodotti in PRFV possono essere tinti in diversi **colori RAL** I nostri colori standard sono **RAL 7004** (grigio) e **RAL 6001** (verde) o traslucido (semitrasparente). A seconda del tipo di resina utilizzato e del trattamento di finitura, si possono avere variazioni nei **colori RAL** (ad esempio con superfici levigate).

Nota: i colori possono risultare leggermente diversi nei vari lotti (anche in un'unica commessa). Lo stesso dicasi nel caso di ordini successivi.

SUPERFICI / TRATTAMENTO DI FINITURA PER PRFV

Superfici

I prodotti in PRFV possono essere forniti con superfici contraddistinte da diverse caratteristiche. A seconda dei desideri del cliente la superficie può essere concava, con levigatura fine e/o sabbiatura grezza.

Procedura di produzione

Le griglie sono realizzate con processo di fusione. Le fibre di vetro sono posate/stirate negli stampi per la successiva colatura della resina. Dopo l'indurimento si toglie lo stampo. Il procedimento di indurimento comporta un ritiro della resina. Il ritiro è minore sulle pareti dello stampo e maggiore al centro. Ne deriva così naturalmente una superficie concava.

Superficie concava

La superficie concava è standard, in quanto si forma automaticamente in seguito all'indurimento. Offre il vantaggio di donare al prodotto in PRFV una superficie con una buona presa per il calpestio.

Superficie levigata

Nella versione levigata, la superficie della griglia in PRFV viene levigata dopo l'indurimento. Le superfici levigate sono particolarmente piacevoli quando si cammina scalzi. Le superfici levigate sono lisce e si caratterizzano per una presa minima.

Superficie con sabbiatura fine

Dopo l'indurimento si levigano le superfici e le si sottopone a sabbiatura con una miscela di sabbia fine e resina. Il trattamento di finitura rende la superficie piacevole quando si cammina scalzi e le conferisce anche una buona presa.

Superficie con sabbiatura grezza

Dopo l'indurimento si levigano le superfici e le si sottopone a sabbiatura con una miscela di sabbia fine e resina. Questo trattamento di finitura si caratterizza per un'ottima presa.

IL MATERIALE PRFV

Resine utilizzate

Le resine utilizzate, vale a dire resina isoftalica, vilinestere e ortoftalica, rientrano tra le resine sintetiche, nei cosiddetti gruppi epossidici. Si tratta di resine a indurimento (resine reattive) utilizzate assieme a un indurente ed eventualmente ad altri additivi.

Le resine rappresentano un componente del materiale composito resistente alla corrosione chimica. Gli altri componenti sono le fibre (di vetro) che in seguito a stampaggio e indurimento si trasformano complessivamente nel prodotto in PRFV. I materiali compositi con fibre di vetro possono essere usati, a seconda del tipo di resina utilizzata, per applicazioni in ambienti soggetti a sollecitazioni ambientali da minime fino a estremamente corrosive.

Caratteristiche della resina

	Resina ortoftalica	Resina isoftalica	Resina vinilestere		
Resistenza chimica	Media	Buona	Ottima		
Modulo di elasticità nel senso delle fibre	17000	22000 27000			
Modulo di elasticità nel senso di trama e ordito	7500	10000	16000		
Volume fibre	35%	40%	50%		
Tipo di fibre	Fibre HT (ad alta resi- stenza)	Fibre HT (ad alta resi- stenza)	Fibre HM ad alto modulo		
Campo di temperatura	-35° - 60° C	-35° - 80° C	-35° - 120° C		

PROTEZIONE ANTINCENDIO PRFV

Autoestinguenti

I **prodotti in PRFV** sono realizzati con **resina ortoftalica, isoftalica e vilinestere** che producono emissioni minime, riducendo il rischio in caso di incendio. Le diverse resine solo trattate con additivi "senza alogeni" ¹ e senza sfruttare cloro, bromo ecc.

	Norma	Categoria	Classificazione		
Resistenza al fuoco	ASTM E84	Categoria A	Indice di propagazione della fiamma <25		

TOLLERANZE DIMENSIONALI PRFV

Standard	Griglie chiuse su un lato	Griglie chiuse su due lati	Superfici levigate
Per lunghezza x lar- ghezza + 5 /- 5 mm (inta- glio)	Con griglie chiuse su un lato è assolutamente necessario l'avvitamento con una struttura portante, in quanto le griglie si flettono e potrebbero quindi creare un punto a rischio di inciampo tra le griglie. La flessione dipende dalle dimensioni della griglia.	Con griglie chiuse su due lati tra le maglie può crearsi puntualmente un ribassamento dovuto a ritiro. In presenza di bagnato si possono quindi formare dei ristagni d'acqua. La qualità non viene però compromessa e pertanto ciò non da diritto a eventuali reclami.	Con un intervento di molatura si elimina la superficie concava, riducendo l'altezza della griglia di circa 3 mm. La tolleranza rientra tra -2 e -4 mm.

¹ Gli additivi sono indurenti, acceleratori e stabilizzatori UV come ulteriori componenti della resina.

COSTRUZIONI IN PRFV

Tutte le nostre costruzioni in PRFV sono realizzate nel rispetto dei requisiti comuni SUVA o rispettivamente SIA o in accordo a norme / prescrizioni / consigli dell'**upi**. I nostri dipendenti sono appositamente formati e partecipano regolarmente a corsi professionali, in stretto contatto con le autorità per mantenere gli alti standard qualitativi in essere. Facciamo notare che i prodotti in PRFV vengono tagliati e forniti su misura, come da richiesta del cliente. Tuttavia devono sempre rispettare le prescrizioni e le disposizioni vigenti (SUVA, upi ecc.).

Taglio di maglie terminali chiuse

- Vista la forma a V di barre portanti e trasversali nel caso di maglie terminali chiuse le barre potrebbero sporgere leggermente (circa 1 mm) in seguito al taglio della griglia.
- Se richiesto è possibile equilibrare la sporgenza con la molatura.

DIMENSIONAMENTO DEI PRODOTTI IN PRFV

Il dimensionamento dei prodotti in PRFV di SPRICH si basa sulle tabelle dei pesi e del carico. Le tabelle sono consultabili sull'homepage.

RESISTENZA CHIMICA

Sinonimo	Significato	Definizione
1	Idoneo	Buona resistenza nell'ambiente/clima indicato
Ξ	Possibile	In questo ambiente/clima possono presentarsi nel tempo variazioni cromatiche e non è possibile escludere un leggero impatto sulla superficie.
×	Non idoneo	La resina risulta notevolmente attaccata o addirittura distrutta e quindi il prodotto non è idoneo per questo ambiente/clima.
	NT	Idoneo per basse temperature fino a 20°C
	HT	Idoneo per temperature maggiori fino a 50° C

N°	Simbolo chimico	Denominazione	Resina ortoftalica		Resina isoftalica		Resina vinilestere	
1	AgN03	Nitrato d'argento	✓	Ξ	✓	✓	✓	✓
2	AICI3	Cloruro d'alluminio	~	✓	✓	√	✓	✓
3	AI(NO3)3	Nitrato di alluminio	*	✓	✓	√	✓	✓
4	Al2(SO4)3	Solfato di alluminio	*	✓	✓	√	✓	✓
5	BaCl2	Cloruro di bario	✓	✓	✓	√	✓	✓
6	BaCO3	Carbonato di bario	✓	×	~	✓	✓	✓
7	Ba(OH)2	Idrossido di bario	✓	×	~	√	✓	✓
8	Ba(NO3)2	Nitrato di bario	✓	✓	✓	✓	✓	✓
9	BaS	Solfuro di bario	✓	Ξ	→	✓	✓	✓
10	BaSO4	Solfato di bario	✓	✓	V	~	✓	✓
11	CaCl2	Cloruro di calcio	✓	✓	~	✓	✓	✓
12	Ca(ClO)2, 15%	lpoclorito di calcio	✓	×	~	✓	~	✓
13	Ca(OH)2, 20%	Idrossido di calcio	✓	Ξ	✓	~	*	✓
14	Ca(NO3)2	Nitrato di calcio	✓	✓	✓	~	4	✓
15	CCI4, 100%	Tetracloruro di car- bonio	✓	×	✓	✓	~	~
16	CH3-COOH, 5%	Acido acetico	✓	✓	✓	✓	✓	1
17	CH3-COOH, 50%	Acido acetico	✓	Ξ	✓	√	✓	✓
18	CH3-COOH, 75%	Acido acetico	Ξ	×	✓	✓	✓	✓
19	C4H80 MEK, 100%	Metiletilchetone	×	×	×	*	×	*
20	CHOOH, 10%	Acido formico	√	×	√	✓	√	✓
21	C2H5OH, 10%	Etanolo	✓	✓	✓	✓	✓	✓
22	CH3OH, 100%	Metanolo	✓	×	✓	Ξ	✓	✓

N°	Simbolo chimico	Denominazione	Resina ortofta	ilica	Resina isoftalica		Resina vinilestere	
23	CO2	Biossido di carbonio	√	✓	✓	✓	√	✓
24	CuCl, CuCl2	Cloruro di rame (I, II)	√	√	√	✓	√	√
25	CuSO4	Solfato rameico	✓	√	✓	✓	✓	✓
26	CS2, 100%	Solfuro di carbonio	×	×	×	×	✓	✓
27	FeCi2	Cloruro di ferro (II)	✓	√	✓	✓	✓	✓
28	Fe(NO3)3	Nitrato ferrico (III)	✓	✓	✓	✓	✓	✓
29	FeSO4	Solfato ferroso (II)	✓	✓	✓	✓	✓	✓
30	HBr, 10%	Acido bromidrico	✓	Ξ	✓	✓	✓	✓
31	HCN, 10%	Acido cianidrico	*	Ξ	✓	✓	✓	✓
32	HCI, 5%	Acido cloridrico	✓	✓	✓	✓	✓	✓
33	HCI 20%	Acido cloridrico	~	✓	✓	✓	✓	✓
34	H2CrO4, 5%	Acido cromico	✓	Ξ	✓	✓	✓	✓
35	H2CrO4, 10%	Acido cromico	✓	×	✓	✓	✓	✓
36	HN03, 5%	Acido nitrico	✓	Ξ	✓	√	✓	✓
37	H2O2, 3%	Perossido di idrogeno	*	Ξ	~	√	✓	✓
38	H2OJCI2	Acqua	✓	Ξ	~	√	✓	✓
39	H3P04, 10%	Acido fosforico	✓	✓	~	✓	✓	✓
40	H2SO4, 10%	Acido solforico	✓	4	✓	✓	✓	✓
41	H2SO4, 30%	Acido solforico	✓	Ξ	~	*	✓	✓
42	KCI	Cloruro di potassio	✓	~	*	~	✓	✓
43	KOH, 5%	Idrossido di potassio	✓	×	*	✓	✓	✓
44	KOH, 10%	Idrossido di potassio	Ξ	×	~	✓	✓	✓
45	KOH, 25%	Idrossido di potassio	Ξ	×	~	✓	~	✓
46	KOH, 50%	Idrossido di potassio	×	×	✓	✓	✓	✓
47	K2C03, 10%	Carbonato di potassio	✓	×	✓	~	✓	×
48	KN03	Nitrato di potassio	✓	✓	✓	✓	~	✓
49	KMn04	Permanganato di po- tassio	Ξ	×	✓	✓	~	~
50	K2S04	Solfato di potassio	✓	✓	✓	√	~	✓
51	MgCl2	Cloruro di magnesio	✓	✓	✓	✓	✓	✓
52	MgCO3	Carbonato di magnesio	✓	✓	✓	✓	✓	✓

N°	Simbolo chimico	Denominazione	Resina ortofta	lica	Resina isoftali	ca	Resina vinilest	ere
53	Mg(NO3)2	Nitrato di magnesio	✓	✓	✓	√	✓	✓
54	MgS04	Solfato di magnesio	✓	✓	✓	✓	✓	✓
55	NaBr	Bromuro di sodio	✓	✓	✓	✓	✓	✓
56	NaCl	Cloruro di sodio	√	✓	√	√	✓	✓
57	NaCN	Cianuro di sodio	✓	✓	✓	✓	✓	✓
58	Na2CO3, 10%	Carbonato di sodio	✓	×	✓	✓	✓	✓
59	NaHCO3, 10%	Bicarbonato di sodio	✓	✓	✓	✓	✓	✓
60	NaHSO3	Bisolfito di sodio	✓	✓	✓	✓	✓	✓
61	NaNO3	Nitrato di sodio	√	✓	✓	✓	✓	✓
62	NaNO2	Nitrito di sodio	✓	✓	✓	√	√	✓
63	NaOH, 5%	Idrossido di sodio	~	×	✓	√	✓	✓
64	NaOH, 10%	Idrossido di sodio	Ξ	×	✓	✓	✓	✓
65	NaOH, 25%	Idrossido di sodio	E	×	✓	✓	✓	✓
66	NaOCI, 20%	Ipoclorito di sodio	✓	H	✓	✓	✓	✓
67	Na2S04	Solfato di sodio	~	Y	✓	✓	✓	✓
68	Na2S03	Solfito di sodio	✓	✓	✓	✓	✓	✓
70	Na2S2O3	Tiosolfato di sodio	✓	✓	✓	✓	✓	✓
71	NH4Br	Bromuro di ammonio	✓	✓	~	✓	✓	✓
72	NH4CI	Cloruro di ammonio	✓	✓	✓	✓	✓	✓
73	NH4F	Fluoruro di ammonio	✓	✓	*	✓	✓	✓
74	(NH4)2CO3	Carbonato di ammonio	✓	×	✓	✓	✓	✓
75	NH4NO3	Nitrato di ammonio	✓	✓	✓	✓	✓	✓
76	(NH4)3PO4	Fosfato di ammonio	✓	✓	✓	✓	✓	✓
77	(NH4)2SO4	Solfato di ammonio	✓	✓	✓	✓	✓	✓
78	NiCl2	Cloruro di nichel (II)	✓	✓	✓	✓	✓	✓
79	Ni(NO3)2	Nitrato di nichel	✓	✓	✓	✓	✓	✓
80	NiSO4	Solfato di nichel (II)	✓	✓	✓	✓	✓	✓
81	ZnCl2	Cloruro di zinco	✓	✓	✓	✓	✓	✓
82	ZnSO4	Solfato di zinco	✓	✓	✓	✓	✓	✓

Le indicazioni di idoneità della tabella sono valori empirici e possono variare nella prassi (in base agli influssi ambientali), pertanto non ci assumiamo alcuna garanzia per i dati segnalati.